Hi, I'm jshufelt


#41

Holy smokes, this stuff is getting better and better :slight_smile:
Nice job and very detailed build man.


#42

Thanks, buddy. I appreciate it. Having a great time trying to one-up myself.


#43

Build #12: Red (Wedding) TADA

After a series of builds with different form factors and aesthetics, I felt it was time to return to the form factor that started it all for me: the TADA68. Why come back to a build that the community generally seems to view as low-to-mid-level? Good for its price point, but low-to-mid-level? Being a bit of a contrarian by nature, and knowing what I know now, I didn’t see any reason why it shouldn’t be possible to build a board, using the TADA aluminum case as a starting point, with top-tier sound and feel. At this point along my learning curve, “top-tier sound and feel” implied a few things:

  • Clipped, lubed, bandaid modded, and upstroke-silenced stabs.
  • Lubed switches.
  • Sorbothane-dampened PCB/plate sandwich.
  • Sorbothane-dampened case.
  • High quality keycaps.

So we know about these things, right? Straightforward?

Of course the title of this build gives the color away, but Game of Thrones fans will notice the second reference. A dark reference. Without giving too much away, a pointed nod in the direction of betrayal. An ultimate, irretrievable loss of innocence.

“Whoa dude”, I hear you saying, “what the hell happened during this build?” OK, yeah, dial back the melodrama a bit. I didn’t get disemboweled, nor did I have to feed anyone their kids baked into a pie for sweet, sweet revenge. But make no mistake: hard lessons were learned.

It all started peacefully enough. After lubing a bunch of Zealios with 3204, it was time to mod some stabs.
Specifically, as mentioned above, let’s clip them, lube them with SuperLube, and do the @Walkerstop O-ring mod. Walker was kind enough to mention that there might be issues with that mod using PCB-mount stabs, but I wanted to give it a go anyway, as it’s been working well on my daily driver, build #11, which also had PCB-mount stabs.

Up until this point, I’ve also had pretty good luck with silicone pads for the “bandaid” mod. Here’s the pad placement for the backspace and enter key stabilizers.

One of my favorite mods, because it’s easy, cheap (if you do a lot of builds), and lends itself to immediate evaluation, is to put small squares of Sorbothane between the plate and PCB. For a standard 1.5mm thick plate, I’ve been finding that 4mm thick pieces of Sorbo make just enough contact between the plate and PCB to dampen keystroke noise, without applying so much pressure that fitment becomes an issue. Specifically, I’ve been finding that a few small Sorbothane pieces are enough to substantially reduce plate noise, and you can just tap the plate before and after placing the Sorbothane to hear a difference.

Because I was in the build groove, I neglected to get photos of the Sorbo placement before the plate was placed, but you can see one square on the plate strut between the backspace and enter stabs, here:

And, in this photo, you can see a couple more Sorbo squares, on the rows above and below the shift key
stabilizer.

Pop quiz: looking at the photo above, what issue is going to arise later on? Do you see the problem? (Answers to come later. Hint: it’s not the Sorbothane.)

Onward. I’ve also been experimenting with using less Sorbothane in the case, both because I can stretch my Sorbothane supply further, and more importantly, because I’m not convinced that covering the entire base yields any perceptible improvement. Here’s the placement I used, with an eye towards avoiding direct contact with ICs, stabilizer screws, and the reset button on the PCB. Avoiding pressure on the reset button seems like a good idea, and in the previous build, I found that too much pressure on the clip end of a stabilizer mount can skew it to one side or the other, affecting stabilizer movement. As for the IC, I really don’t know if it matters or not, but why risk it if we don’t need to cover the entire base anyway?

After soldering and screwing the PCB/plate sandwich into the case, we have one more thing to address before putting on the keycaps. In this case, staying with the red theme, I wanted to use GMK Red Honey. But, the TADA PCB has north-facing switches, which means that R2, R3, and R4 keycaps can hit the switch housing, interfering with feel and sound. Fortunately, by the time I got around to this build, a solution had emerged; place washers around the switch stems on the affected rows to lift the keycap enough to keep it from impacting the housing on keypresses.

These washers are thin, so two washers are necessary on each switch stem. By way of illustration, the leftmost stem in this photo has two switch washers.

For affected keys with stabilizers, I felt it made sense to put two switch washers on the stabilizer stems as well.

And we’re done. And it’s a great board, right? Right??

I wanted to believe. But after testing and evaluation, there were numerous issues.

  • Two in-switch LEDs in the number row are dead. They were originally functional, but no light now.
  • The O-rings in the spacebar stabilizer housing were not moving smoothly, instead rubbing against the housing and impeding spacebar movement enough to be really annoying.
  • Along similar lines, the enter key stabilizer is also sluggish; on visual inspection, it appears that one housing is ever so slightly tilted off vertical.

And, worst of all. Remember the pop quiz? Did you see it?

Answer: when the spacebar wasn’t being impeded by the O-ring, the spacebar stabilizer wire was hitting the plate - because there is no cutout! Maybe my problems with stabilizers are simple - I’m just not paying enough attention to stabilizer fit during the build, and that lack of attentiveness is coming back to bite me.

Dejected with the resulting board’s performance, I left it outside for two months. Maybe a dog will take care of it?

OK, no, I didn’t really leave it outside for the dogs. It did, however, take me two months to get back to this board for the inevitable rebuild. Yes, I have to desolder the whole thing to fix my issues. And before that, I have to remove all of those key washers. Tweezers once again prove themselves invaluable.

After getting the washers and keycaps removed, and unscrewing the PCB from the case, we’re ready to desolder. By the way, for those of you wondering what the Sorbothane looks like in the case after a few weeks of pressure from the PCB, here you go. FWIW, no residue on the PCB. It does require some gentle steady pressure to remove the PCB from the Sorbothane, but the Sorbothane will slowly peel away.

This sort of rebuild is exactly why you want a desoldering gun. This would have been fairly awful to do with a pump and wick, but with a desoldering gun, it was only mildly painful, even with all of those LEDs (I know, I don’t need them, they are nothing but pain. It’s taking time, but I’m coming around to that view). Finally, I got all the LEDs and switches out, unscrewed the stabs, and gently peeled away the plate from the Sorbo squares that were still holding it to the PCB. Now, we can get a good look at the spacebar stab hole, and the absence of the necessary cutout.

A few minutes of work with a needle file gives us what we need, and we don’t need much - maybe a millimeter of additional space is enough.

Next up, I removed the silicone pads I was using for the bandaid mod. These are 0.5mm thick pads, which I thought would be fine under compression when the stabilizers were screwed in, but I’ve been rethinking this recently - I now think that unless they’re cut to size and placed exactly centered under the stab stem, the stab housing can sit unevenly on the pad, leading to a very slight tilt which negatively affects keycap fit and stabilizer movement. So, I reverted back to a known working method; I placed electrical tape in the appropriate spot. You can see that below, along with the four little squares of Sorbothane that sit between the PCB and plate.

Next up, stabilizer upstroke treatment. At least with these GMK screw-in PCB mount stabs, it appears that the O-ring has enough freedom of movement that it can get caught in the nooks and crannies of the interior of the housing (interestingly enough, this hasn’t been an issue with the OEM PCB mount stabs I used in build #11 - I need to compare those housings with the GMK housings). So what to try next? Let’s give the Rama heatshrink treatment a go. Here we have 1.5mm heatshrink wire wrap, and as per Rama’s video, it’s cut into 6mm sections. The 6mm length appears to be important, from my experiments - too short, and you’ll have bare wire hitting the stab housing on the upstroke, and too long, and the heatshrink will create friction inside the stem housing where the stab wire goes.

After disassembling the stabs and cleaning away the SuperLube, I used a heat gun to apply the wire wrap. For this task, a QuadHands comes in, well, handy.


After putting the stabs back together, screwing them back into the PCB, and fitting the plate, this time I did what I should have done the first time: test fitment and sound carefully. And I’m glad I did, as I needed to go back with the needle file and take just a tiny bit more away from the plate. From there up to the switch washers, it was deja vu.

A word of caution to those of you considering using the north-facing key washers. They work, but they are so thin that it’s very easy to put 1 or 3 washers on a switch when you meant to place two. One isn’t enough to fully eliminate the cap impacts on the switch housing, and three washers occasionally generates noise of its own - I think because on the key upstroke, the top washer lifts away from the other two before landing on them again, creating a metallic click. I think this might happen occasionally with two washers, but I can’t think of a way to confirm that.

As a side note, I inadvertently discovered another problem with the initial build during this process - I ended up four washers short, which can be easily explained by forgetting to place them on the stabilizer stems for one key. Sigh. As with everything else in life, it really is all about attention to detail.

So, as you can imagine, I was happy when this board’s original betrayal gave way to a kind, loving relationship. All of the stabilized switches are quiet now, with minimal upstroke noise; lubed switches continue to be everything; and yeah, all of those LEDs work. This is the result I hoped to obtain on the first build attempt!

Lessons learned

  • The north-facing washer issue is real. I think @pixelpusher was the first to document this, and I admit to some surprise at the pushback he initially received - once you actually test this yourself, I don’t see how one can fail to notice the difference. It’s not subtle. I think the north-facing washers on the market now go a long way towards resolving the issue, although they may not be a solution for everyone, since there will now be a slightly more metallic clack on the washer-treated keys. Something to keep in mind whenever north-facing PCBs and GMK caps are on the same build manifest.

  • If you are using these washers, take your time installing them. They’re tiny, and it’s hard to see (at least with my old eyes) whether I’ve placed one or two or three on a switch stem, and you really do want two.

  • With all of the high-tactility switches hitting the market, it has to be said: V1 Zealios still hit a lovely mid-tactility spot. With Tribosys 3204 (not on the bumpy legs!), these are really quite nice.

  • The Walker O-ring method has worked great for me with plate-mount stabs and with OEM PCB-mount stabs, but created problems with GMK screw-in PCB-mount stabs. I need to understand the internal geometry of the various stab housings better than I currently do, as I still prefer the O-rings for upstroke silencing.

  • The Rama heatshrink approach is not quite as effective at stab silencing as the O-ring approach, but it is an improvement nonetheless. There is a bit less key travel with this mod, but I’m not sure how much of that is actual reduced travel vs. the feel that the upstroke has with this mod, a more muted snap. Note that I applied lube to the exterior of the heatshrink as well as the wire.

  • When the silicone pad bandaid mod worked, I preferred it to tape. It might be worth looking for a thin silicone tape to get the feel that a silicone pad provides, without so much thickness.

  • And last but definitely not least, I’ve done enough builds by now that I really should have internalized this: TEST THE STAB FIT AND MOTION BEFORE SOLDERING. Mount them, seat switches, put keycaps on. Test. Test again. Is anything impacting the plate? Are the stab housings perpendicular to the PCB? Is the upstroke noise acceptable? Now is the time to fix all of these issues, not later after soldering.

  • But, if you have to rebuild it, then you have to rebuild it. And it won’t be the end of the world. Buck up!

Here, let’s get our new friend out of dog’s way.

Specifications

case: TADA68 anodized aluminum (red)
case dampening: 0.1" 40 Duro Sorbothane patches
PCB/plate: TADA68
LEDs: red f1.8mm per-key
switches: R11 67g Zealios
switch lubing: Tribosys 3204
layout: TADA default
keycaps: GMK Red Honey
stabilizer: GMK screw-in PCB mount
stabilizer mods:
- Rama-style heat-shrink mod on wire-ends
- clipped; lubed housing, sliders, & wire-ends with SuperLube
- electrical tape bandaid mod
plate/PCB dampening:
- 4mm wide strips of 0.25" 50 Duro Sorbothane
- strips placed sideways on wide plate struts
HxWxD (without caps): 1.25"x12.25"x4.25"
HxWxD: 1.63"x12.25"x4.25"
assembled weight: 3.20 lb

#44

Great write up as always. I need to try that stabilizer wrap trick! Also, those caps look great on the red tada case.

I know what you mean about testing stabilizers before soldering. I feel like 1/2 of my time building a new board is dealing with the damn stabilizers.


#45

LOL, I concur! I spend an obnoxious amount of time getting the stabilizers just right on my builds nowadays too. It’s a pain in the ass, but definitely pays off in spades with the finished build to take the extra time testing the stabilizers fitment & function with caps on before soldering any switches!


#46

Awesome write ups, thanks for putting the time in to do this! It’s really cool the way you’ve documented all your builds & what you’ve learned with each one on this thread. Definitely will serve as valuable information for a lot of people. Keep up the good work man! :metal:


#47

Thanks man, I appreciate it. If not for others documenting their builds and methods, I wouldn’t have been able to do any of this in the first place, so it seems only fair to return the favor. I also enjoy spinning a good yarn…


#48

Build #13: Ocelot

By now, I thought we’d be talking about one of several 60s I’ve got in the pipeline. Between whatever Holy switch variant has hit the market this week, experiments with Rama-style stabilizer mods, first experiences with hotswap boards, and more QMK hacking, there is a bunch going on here in jshuf-keebland. But as is often the case with this hobby, there’s always something holding up progress. Usually, the holdup is waiting on supplies to arrive, and, to be sure, there’s some of that. But in addition, this polar vortex business has flushed me out of the unheated garage where I set up shop. Great in the summer and fall, less great when it’s 1F outside.

All of which is to say: it’s nice to have a quick project that can be knocked off in the oh-so-warm dining room in an hour. I hadn’t built any kind of macropad before, and the Singa Ocelot just looked, well, cute. Let’s do it.

The Ocelot case consists of two parts: a matte-finished baseplate and a top case with an integrated plate.

There’s no mounting screws for the PCB, so we begin by inserting switches into the integrated plate.

Once the switches are snapped into place, we flip the case over to make sure everything is lined up nice and neat.

The PCB dropped right into place, with USB-C connector out the back and switch pins lined up. A quick trip to that frozen garage for a quick bit of soldering, and there we are.

At this point in the build, it was pretty clear that some kind of case dampening was going to be necessary. A quick tap test on the switches yielded a pretty significant metallic ping from the case. Time to break out the Sorbothane.

Sorbomummies

I find Sorbothane to be quite effective at eliminating case ping, but as more people look into using it, there are a couple of questions that keep coming up.

  • Sorbothane is sticky, and if it is in direct contact with the PCB, will it be possible to remove it without breaking the PCB?
  • Will the plasticizer in Sorbothane do bad cosmetic things to the case, or bad things in general to the PCB or its components?

While I’ve been able to separate Sorbothane from PCBs before, by applying steady firm pressure until the Sorbothane gradually peels away, and I’ve never felt like the PCB was going to crack or break before the Sorbo let go, I’ll grant that it can be a bit nerve-racking. As far as plasticizer concerns go, I haven’t seen issues so far, but I’ve only been building for a few months, so I can’t offer any insight into long-term effects. So, after thinking over the problem for a while, I’ve come up with a possible solution. Enter Sorbomummies - pieces of sorbothane wrapped in gaffer tape.

Start with a strip of gaffer tape, adhesive side up, a little over twice as long as the Sorbothane square you want to use for dampening. In this case, I want the square to span all eight switches, with a bit of spare room on all four sides.

Cut the tape, and place the sorbothane centered in the tape, with a little room to the left.

Now, fold the extra tape back over the sorbothane, and use the edge of your finger to tighten up the edges of the Sorbothane.

Use scissors to trim the excess gaffer tape from the sides of the Sorbothane packet. Here’s the initial Sorbomummy, laid in place on the PCB.

The idea is that the pressure from the soldered switch pins and the case base will hold the packet in place and allow it to dampen key impacts. It’s a good idea to place the packet first and make sure that enough pressure is present - in this case, one wrap of gaffer tape on a 0.1" thick piece of Sorbothane wasn’t quite enough. I ended up having to wrap the packet three times to get sufficient thickness. The process is pretty much what you’d expect, just keep wrapping your mummy. While we’re here, check out that Ocelot base!

If you’re using Sorbothane as originally intended by the manufacturer, you should be targeting a 10-20% compression of the material. After three wraps of the Sorbothane in gaffer tape, here’s the Ocelot base, resting on the Sorbomummy, just a little bit displaced from the Ocelot top. 10-20% compression once the top’s screwed in? I’ll go with yes.

Put the screws back in, and we’re done - and no more metallic case ping. Just the loud clack of those Holy GSUS noise bombs.

Lessons learned

  • Gaffer tape seems to be a good solution for introducing Sorbothane into builds in a non-reactive and easy-to-remove way. I’ll be trying this approach again on upcoming builds.
  • In the event anyone was curious, the VIA configurator (0.29) handles switching between multiple VIA-compatible devices on the same host system, in pretty much exactly the way you’d expect. Olivia and Wilba FTW.
  • Since VIA doesn’t (yet) handle macros, I’ll still be setting those up in QMK userspace for the time being. No big deal, but if you’re looking for the Singa Ocelot in the repo, note that wilba_tech/wt8_a is the droid you’re looking for.

I’m still not sure exactly what I’m going to do with this thing, but what the hell. It’s nice!

Specifications

case: Singa Ocelot (velvet)
case dampening: 0.1" 40 Duro Sorbothane, triple-wrapped in gaffer tape
PCB: Wilba WT8-A
plate: 3mm integrated
LEDs: none
switches: Holy GSUS (Halo True stems)
switch lubing:
  Tribosys 3204 hand-lubed stems & housing
  Krytox GPL 104 tub-lubed springs
keycaps: OLKB Acute Ortholinear
plate/PCB dampening: none
HxWxD (without caps or feet): 0.88"x4.0"x2.38"
HxWxD (without caps): 0.94"x4.0"x2.38"
HxWxD: 1.31"x4.0"x2.38"
assembled weight: 0.79 lb

#49

Build #14: Tofu tasting (1st course: acrylic)

In an earlier build log, I mentioned that my “workshop” is in the corner of an unheated garage. This makes it difficult to do much soldering in the winter months. During the worst of the cold spells, I hunkered down and did a bunch of switch modding. For this build, the first in a series of builds with various Tofu cases and PCBs, I wanted to actually use some of the fruits of my labors. Introducing: the Holy GSUS!

For those who haven’t been following the Holy Panda saga, I’m not going to replay all of the drama here - you can use this post to review. For our immediate purposes, the following suffices:

  • A Holy Panda is a switch assembled from the stems of Halo switches (tactiles), and everything else from an Invyr Panda (linear). It is very tactile and loud. Up until recently, the market price for these has been quite high, due to the scarcity of the Panda switches.
  • A Holy GSUS is also assembled from the stems of Halo switches, but everything else comes from a Bsun GSUS, a clone of the Invyr Panda. While this was a one-off run, it is now possible to find other Panda clones on the market.

For lubing, I went with manual application Tribosys 3204 on the housing rails, slider stem, and slider sides; I didn’t apply any lube to the tactile legs. I used roughly 1mL per 65 switches. For the springs, I tub lubed with Krytox GPL 104, about 1 drop of lube for every 7 springs. The results are below - a lubed batch of Holy GSUS on the left, and on the right, an unlubed batch of the Unholy GSUS - GSUS stems with Halo housings and springs, the unused byproduct of the Holy GSUS assembly process.

I had been using electrical tape for the stabilizer bandaid mod, and then silicone pads, but I found the silicone pads to be a bit finicky in recent builds. Specifically, if they aren’t centered under the stabilizer housing, the housing can tilt slightly to one side when it’s screwed into place atop the silicone pad, leading to problems with stabilizer function. So, on to alternative #3: gaffer tape, a good cloth tape. Here’s the bandaid mod on the DZ60 we’re using for this build:

Whenever I build with a DZ60, I use nonconductive washers for all of the screws - it’s not strictly necessary for all of them, but for at least one of the screw holes, the screw can short out a couple of pads on the board, and once I’ve used a washer for one screw hole, my OCD kicks in and I’ve got to use washers for all of them. Here they are on GMK stabilizer screws:

And here’s the one that has caused me short problems in the past, the stab screw for the enter key, just to the right of R60 (you can see a pad poking out from underneath the red washer):

With bandaid modded, clipped, and lubed stabs in place, it’s time to address PCB/plate dampening. For a typical 1.5mm plate, I’ve been finding that 4mm of Sorbothane between the plate and PCB is just about right for removing plate pings. Because 4mm thick Sorbothane doesn’t seem to be readily available, I’ve been hand-cutting 4mm-wide strips from a 0.25" thick sheet of Sorbothane.

Once I have the 4mm strips, I’ll cut off small pieces and rotate the pieces sideways before sandwiching them between the plate and PCB, to achieve the desired 4mm compression. I put the pieces wherever I can fit them without getting in the way of screw holes or switch cutouts - on this plate, that means the area right above LShift, the little area between Return and the screw hole above it, the same area on the left side of the board between CapsLock and the screw hole, and on either side of the space bar. Not much Sorbothane, but you don’t need much to obtain good results.

Before going any further, this is a good time to get corner switches in, and check stabilized keys for any issues.

Now, at this point we could just mount switches, solder, screw the PCB/plate sandwich into the case. In fact, I did this during a brief warm spell (50F in the garage, fire up the iron!), because I wanted to find out: how loud would a hyper-tactile switch be, in a hard sound-reflecting plastic case?

It turns out, it’s loud. Very loud. If you’re a hard typist, the combination of acrylic and Holy Pandas will be like having a batch of popcorn popping under your fingers. Even if you love the click and clack of a noisy switch, you might find this to be just a little too much of a good thing.

So, I opened it back up, and set about dampening the case. If you’ve been following my logs at all, you know my standard approach involves Sorbothane. However, for this build, we have to be careful. The case we’re using is a frosted acrylic Tofu, and a big reason for using this case is to show off and diffuse all of the RGB underglow from the DZ60. So, if we use Sorbothane, we need to make sure we’re not blocking the LEDs. Easy. However, Sorbothane is black, and aside from light absorption, black is going to look somewhat ugly through a frosted translucent case.

To solve both problems, I did the same trick that I used on the Ocelot build - I wrap the Sorbothane in white gaffer tape. After cutting a section of Sorbothane to size, I place it on the adhesive side of a strip of gaffer tape:

Then, I fold the tape over, crimp the remaining three sides of exposed tape together, and trim the excess tape from the resulting bundle of Sorbothane to obtain a nice tidy packet which I can place in the case wherever it’s needed.

With the acrylic Tofu case, that means I need a couple of layers of Sorbothane packets. The Tofu has a recessed L-shaped cutout area, and hence the case surface is further away from the PCB there. So I started by placing three Sorbothane packets in the center of the L-shaped area:

Then, I placed two larger packets on top of those, to cover the remaining distance to the PCB. Note that there will be nothing other than pressure between the case, the PCB, and each other to hold these packets in place.

Also note that because the exposed surface of these packets is the non-adhesive cloth side of the gaffer tape, there’s no discoloration of the case, and removal of the packets is trivial. Here’s what it looks like from the underside. Just around the edges of the Sorbo packets, you can see a few of the LEDs (the small white squares).

Light from the LEDs makes it to the edge of the case unimpeded, so we’re good to go.

From the top, the case does a pretty good job of light diffusion, better than I was expecting.

And, while this is never going to be a quiet keyboard, the Sorbomummies do a decent job of taking away some of the high-pitched clack. If I focus on riding the tactility and not bottoming out, it’s actually not a bad experience, for such a lightweight board.

Lessons learned

  • First keyboard with Holy Panda clones (no, the Ocelot doesn’t quite count), and I like them, but I’m not sure if it will be too much tactility for long typing sessions. The jury is out. Sound is great, though, especially with dampening in place. I need to try a Holy Panda variant in a heavy case.
  • Other than having to carefully separate the occasional entangled springs, tub lubing springs works for me. Much faster. Could possibly increase the ratio of lube per spring?
  • I finally remembered to get corner switches in and test stabs before soldering! Old dog, meet new trick.
  • Gaffer tape + Sorbothane seems to preserve the sound-dampening benefits of Sorbothane, while also making it easier to place in the build, and less potentially destructive (concerns about plasticizers in Sorbothane).
  • Gaffer tape also works at least well as silicone pads and/or electrical tape, and I’ll be using it going forward, but in a common refrain for my build logs, I still haven’t found what I’m looking for.
  • First experience with MDA caps - the gentle sculpting makes them much more usable than XDA, and the material feels quite nice. With that said, I’d still prefer GMK any day of the week - MDA feels bulky and clumsy to me by comparison. YMMV.

Finally, every teenager that has passed through the house has strongly approved of this board. Draw your own conclusions.

Specifications

case: acrylic Tofu
case dampening:
- 0.188" 30 Duro Sorbothane for bottom layer
- 0.1" 40 Duro Sorbothane for top layer
PCB: DZ60 R2
LEDs: PCB underglow only
plate: DZ60 plate-B aluminum
plate/PCB dampening:
- 0.25" 50 Duro cut to 4mm thick squares
stabilizers: GMK screw-in
stabilizer mods: clipped, lubed, bandaid with gaffer tape
switches: Holy GSUS (Halo True stems)
switch lubing:
- Tribosys 3204 hand-lubed stems & housing (1mL/65 switches)
- Krytox GPL 104 tub-lubed springs (1 drop/7 switches)
keycaps: MDA Big Bone
HxWxD (without caps or feet): 1.25"x11.63"x4.31"
HxWxD (without caps): 1.31"x11.63"x4.31"
HxWxD: 1.75"x11.63"x4.31"
assembled weight: 1.65 lb

#50

I love how thorough you are with your builds and how well documented they are! Very nice.


#51

Build #15: Rama M60-A

Here’s the thing about an M60-A build log: there isn’t really much building to log. Once you have stabs and switches lubed, you’re basically almost done. More than other logs, this one will be about admiring the board. Let’s start by admiring the anodization (‘Moon’ grey finish) on the M60-A’s integrated plate and bottom, which is exceptional: uniform, smooth, even. Any specks you may see in this photo or any of the others are due to the use of a phone camera, or dust that I failed to wipe away - the finish really is flawless.

And of course the PVD backplate. You’re looking from above, at the reflection of the paper towel underneath the board, to illustrate that ‘PVD mirror-finish’ is not hyperbole.

The beauty isn’t just skin-deep with the M60-A. The Wilba-designed M60-A hotswap PCB is lovely, both top and bottom:


In this build, even the mods and lube jobs were easier than usual. The Wilba-designed PCB includes per-switch RGB LEDs and spacebar stabilizer RGB LEDs, so to be sure to enjoy all of those Rs, Gs, and Bs, I went with transparent Zeal stabilizers. Because of the placement of the LEDs, a bandaid mod would have been counterproductive; and, because the Zeal stab sliders have no legs, no clipping needed to be done; and, because of the M60-A’s HHKB layout, only one 7u and two 2u stabs were needed. Lube three stabs and screw in? Fast and straightforward.


At this point, you might be famished from all of the hard work. Be sure to obtain proper nourishment.
Homemade chicken soup with a big pile of cilantro will help.

The switch lube job was easy as well, although that had nothing to do with the M60-A. Remember the Zilent build logs I did a while back? I had some spare 65g and 67g V1 Zilents already lubed and ready to go from those builds, although not enough of either to populate the entire board. Hey, let’s pretend we’re in Topre-land - how about some variable force action?

Maybe you can tell the difference between lubed 65g and 67g Zilents in this layout by feel - I can’t.

After carefully pushing the switches into the plate and hotswap sockets (I like to backstop the hotswap socket with a finger to prevent excess force from dislocating the socket), it was time to assemble the case. Now seems like a good time to mention that Rama’s online support for M60-A builds is quite thorough and graphically satisfying. I don’t know of any other vendor or GB runner in the community that provides this level of online support. Feel free to interpret that as both a shout-out for team Rama, and a call to action for the rest of the community to step up their game.

Time for more ano porn. Here’s the underside of the M60-A, with silicone feet installed. Note the glare of the ceiling lamp on the strip of PVD backplate.

We can’t really talk about M60-A support without mentioning firmware configuration, another area in which the board excels. While the M60-A supports QMK in the usual way, it is also one of the few boards that can be configured with the VIA configurator. For people who aren’t looking to download and compile firmware with QMK, have a fear of flashing firmware, and just want to do simple keymap assignments and lighting adjustments, there will never be a need to go beyond what VIA offers, right now. It delivers an extremely intuitive interface, and it’s hard to imagine that anyone reading this wouldn’t enjoy the experience of making a keymap or lighting change in VIA and seeing it reflected instantaneously on the keyboard. Very cool.

So with that said, why wouldn’t you use VIA?

  • If you’re comfortable coding with QMK, and you’ve set up a QMK userspace that generalizes to all of your boards, then VIA is superfluous. In my case, I’ve spent a fair amount of time generalizing my keymaps to apply to a wide range of board layouts, so new layouts can be supported and flashed quickly.
  • VIA support for more advanced features (macros, for example) remains to be implemented.

I ended up compiling my own firmware with macros and flashing it to the M60-A, and while I can’t configure macros with VIA, it doesn’t interfere with them either, so I’ve continued to use VIA for playing with lighting.

Not so fast! At press time, I discovered that I lost my macros with the latest flash of the firmware, but I was able to get them back by disabling DYNAMIC_KEYMAP_ENABLE. So at present, it looks like either I can use VIA, or I can use my custom firmware with macros, but not both at the same time. So it goes…

As I’ve already noted, the M60-A anodizing is very high quality, and the mirror PVD back is stunning (take care to enjoy it without fingerprints all over it - that won’t last). With GMK Monochrome caps, the board almost looks too pretty to use. Almost. And although I’m not a fan of artisan caps, I couldn’t resist the Wave cap Rama offers in the same colorway, and I have to say that it really works here - the consistency of the industrial look really works for me.

With V1 Zilents, the board is reasonably quiet without the optional weight or a Sorbothane treatment. Even the spacebar is not too bad. With that said, this is a somewhat hollow-sounding board, and although I haven’t tried non-silent switches on it yet, I can’t say that I’m surprised that others have noted that the sound needs work. I’m expecting to get the internal weight for this board later this year, and I’ll probably play with my usual sound dampening treatments then.

Before we get into lessons learned, let’s check out that backside again.

Lessons learned

  • The M60-A unboxing experience merits mention. From the hard protective foam, to the layered presentation of the items in the M50-A kit, to the consistency of theme in all of the materials, Rama has this down. The only possible nit I could pick would be “start here” documentation - it might have been a nice touch to include a card with a pointer to the M60-A guides on the website.
  • The Rama hype for fit and finish is real. In terms of construction quality, this is the nicest board I currently own. The anodization and PVD treatments are top-notch.
  • Integrated plates look lovely and remove one variable from the build equation, but I remain unconvinced in terms of sound. It just feels like any vibration from key impact is being transmitted unimpeded across the entire board, which for me is not a good thing. It will be interesting to see how much of this problem will be addressed by the silicone internal dampener Rama recently introduced.
  • The PVD backplate is incredibly nice, for the five or so seconds it will remain spotless before you touch it, at which point you’ll be keeping a microfiber cloth handy to wipe it down every time you accidentally touch it. Love the way it looks, hate the degree of maintenance it’s going to take to keep it that way.
  • As convenient as hotswap is, I’m looking forward to the solderable M60-AX PCB. There is something intrinsically flimsy about hotswap that seems out of place on a board like this.

Whatever. Look at it.

Specifications

case: Rama M60-A (Moon)
case dampening: none
PCB: Wilba M60-A
plate: integrated, 4.5mm
LEDs: RGB per-switch, integrated in PCB
switches: 29 V1 R11 65g Zilents
	  31 V1 R11 67g Zilents
switch lubing: Tribosys 3204
keycaps: GMK Monochrome
	 Rama WAVE SEQ 2 AL (Moon)
stabilizer: Zeal transparent V2
stabilizer mods: lubed housing, sliders, and wire ends with SuperLube
plate/PCB dampening: none
HxWxD (without feet or caps): 1.31"x11.63"x4.56"
HxWxD (without caps): 1.38"x11.63"x4.56"
HxWxD: 1.56"x11.63"x4.56"
assembled weight: 3.60 lb